221 research outputs found

    An efficient one-pot synthesis of polyphenolic amino acids and evaluation of their radical-scavenging activity

    Get PDF
    A simple and efficient procedure for the synthesis of N-acyl 4-hydroxy, 4-hydroxy-3-methoxy and 3,4-dihydroxy phenylglycine amides by a strategy based on the multicomponent Ugi reaction is proposed. Hydroxybenzaldehyde derivatives were reacted with 4-methoxybenzylamine, cyclohexyl isocyanide and benzoic acid or 2-naphthylacetic acid to give Ugi adducts that were treated with trifluoroacetic acid yielding N-acyl hydroxyphenylglycine amides in good yields. The same procedure using as acid component protocatechuic acid or hydrocaffeic acid gave N-catechoyl 3,4-dihydroxyphenylglycine amides. The use of N-benzyloxycarbonylglycine as acid component allowed the preparation of a 3,4-dihydroxyphenylglycyl dipeptide derivative. Radical-scavenging activity studies of the polyphenolic amino acid derivatives showed a sharp increase in activity with the increase in number of hydroxyl or catechol groups present. Cyclic voltammetry experiments established a correlation between oxidation peak potentials and the radical-scavenging activity.This work received financial support from the Foundation for Science and Technology (FCT, Portugal), through projects PTDC/QUIQOR/29015/2017, UID/QUI/00686/2016 (CQUM) and UID/QUI/50006/2013-POCI-01-0145-FEDER-007265, co-financed by European Union (FEDER under the Partnership Agreement PT2020), and from North of Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF) (project NORTE-010145-FEDER-24). We also acknowledge the Doctoral grant SFRH/BD/100889/2014. We are thankful to Laboratory for Structural Elucidation of the Materials Centre of the University of Porto CEMUP for MS/NMR analysis and able technical support

    An Insightful Model to Study Innate Immunity and Stress Response in Deep‐Sea Vent Animals: Profiling the Mussel Bathymodiolus azoricus

    Get PDF
    Deep‐sea environments are, in some cases, largely unexplored ecosystems, where life thrives driven by the geochemical features of each location. Among these environments, chemosynthesis‐based ecosystems, in the Mid Atlantic Ridge, have an exclusive combination of high depth, high sulfur, and high methane concentrations. This is believed to modulate the biological composition of vent communities and influence the overall vent animal transcriptional activity of genes involved in adaptation processes to extreme environments. This opens, thus, the possibility of finding gene expression signatures specific to a given hydrothermal vent field. Regardless of the extreme physicochemical conditions that characterize deep‐sea hydrothermal vents, the animals dwelling around the vent sites exhibit high productivity and thus must cope with toxic nature of vent surrounding, seemingly deleterious to the animals, while developing surprisingly successful strategies to withstand adverse environmental conditions, including environmental microbes and mechanical stress whether ensuing from animal predation or venting activity. The deep‐sea vent mussel Bathymodiolus azoricus has adapted well to deep‐sea extreme environments and represents the dominating faunal community from hydrothermal vent sites in the Mid‐Atlantic Ridge, owing its successful adaptation and high biomasses to specialized exploitation of methane and sulfide sources from venting activity. Its extraordinary capabilities of adapting and thriving in chemosynthesis‐based environments, largely devoid of photosynthetic primary production and characterized by rapid geochemical regime changes are due to symbiotic associations with chemosynthetic bacteria within its large gills. In an attempt to understand physiological reactions in animals normally set to endure extreme deep‐sea environments, our laboratory has undertaken, for the last few years, a series of investigations, aimed at characterizing molecular indicators of adaptation processes of which components of the host defense system has received most attention. This study reviews recent advances on the characterization of molecules and genes participating in immune reactions, using in vivo and ex vivo models, to elucidate cellular and humoral defense mechanisms in vent mussels and the strategies they have adopted to survive under extreme environments

    Commercial Gold Complexes Supported on Functionalised Carbon Materials as Efficient Catalysts for the Direct Oxidation of Ethane to Acetic Acid

    Get PDF
    UIDB/00100/2020 UIDP/00100/2020 LA/P/0056/2020 IST-ID/119/2018 SFRH/BD/146426/2019 CEEC-INST/00102/2018 UIDB/50006/2020 UIDP/50006/2020 Base-UIDB/50020/2020 Programmatic-UIDP/50020/2020The single-pot efficient oxidation of ethane to acetic acid catalysed by Au(I) or Au(III) compounds, chlorotriphenylphosphinegold(I) (1), chlorotrimethylphosphinegold(I) (2), 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidenegold(I) chloride (3), dichloro(2-pyridinecarboxylato)gold(III) (4), homogenous and supported on different carbon materials: activated carbon (AC), multi-walled carbon nanotubes (CNT) and carbon xerogel (CX), oxidised with nitric acid followed by treatment with NaOH (-ox-Na), is reported. The reactions were performed in water/acetonitrile. The materials were selective for the production of acetic acid, with no trace of by-products being detected. The best homogenous catalysts were complexes 2 and 3 which showed the highest ethane conversion and an acetic acid yield of ca. 21%, followed by 4 and 1. The heterogenised materials showed much better activity than the homogenous counterparts, with acetic acid yields up to 41.4% for 4@CNT-ox-Na, and remarkable selectivity (with acetic acid being the only product detected). The heterogenised catalysts with the best results were reused up to five cycles, with no significant loss of activity, and maintaining high selectivity for acetic acid. 4@CNT-ox-Na showed not only the best catalytic activity but also the best stability during the recycling runs.publishersversionpublishe

    Characterization of wine fermentations using fiber optic-mediated UV-VIS-SWNIR spectroscopy

    Get PDF
    Spectroscopy is widely used in biological sciences, being applied to liquids, pastes, powders, films, fibers, gases and surfaces. It makes possible to characterize proteins, peptides, lipids, membranes and carbohydrates in pharmaceuticals, foods, plants or animal tissues. It can also provide detailed information about the structure and mechanism of action of molecules. UV-VIS-SWNIR spectroscopy has not been used for fermentations characterization. This is possibly attributed to the fact that UV-VIS spectroscopy records transmissions between electron energy levels from molecular orbitals, which do not have a direct relationship with the presence/concentration of compounds, instead of vibrational or structural oscillation of molecular groups as in the infrared region, where such relationship is more straightforward. UV-VIS-SWNIR spectroscopy registers many features such as fluorescence and vibrational resonances due to energy decay of exited electrons, which may provide highly accurate fingerprinting of metabolites and metabolic state of the fermentation, provided that an adequate data treatment and interpretation system is available. In this work we explore the use of fiber optics UV-VIS-SWNIR spectroscopy to characterize wine fermentations of a Saccharomyces cerevisiae collection. This collection comprises 114 strains (among which almost 40 are sequenced strains), between industrial strains used for winemaking, brewing, bakery, distillery (sake, cachaça) and ethanol production, natural isolates obtained in winemaking environments, and also strains from particular environments (e.g. pathogenic strains, isolates from insects, fruits and oak exudates). Individual fermentations were carried out in 100 mL wine (cv. Loureiro) must for each of the 114 strains, and the growth rate, CO2 release and glucose concentration were followed throughout fermentation. When glucose concentration was below 5 g/L, cells were collected and immediately frozen and stored for fiber optics spectroscopy analysis. Transmittance fiber optics UV-VIS-SWNIR spectroscopy was used to record the spectra between 200 and 1200 nm, using a highly sensitive scientific-grade spectrometer (Ocean Optics, QE65000) for maximum resolution. The procedure was performed in a special probe container designed to isolate the environmental light and maintain the probe horizontally, to prevent the deposition of debris in the mirrored surface. The following experimental procedure was performed: spectra were obtained at room temperature at previously stabilized (20 min) light sources; dark spectra were recorded and measurements were taken with linear and electric dark correction. Light spectra were statistically monitored, assessing the reproducibility of the light source by regular light measurements. Twenty spectra replicates were recorded for each fermentation. Results show that after appropriate preprocessing and signal classification, fiber optics UV-VIS-SWNIR spectroscopy is a robust technique for characterize different wine fermentations, being able to characterize and differentiate the fermentation of different strains of S. cerevisiae based on their origins, by each spectroscopic fingerprinting. This technique associated with other physico-chemical information can benefit the creation of an information system capable of providing extremely detailed information about physical processes and molecular biology that will aid both scientists and engineers to study and develop new biotechnological products.Fundação para a Ciência e a Tecnologia (FCT

    Alternative pathways to a sustainable future lead to contrasting biodiversity responses

    Get PDF
    Land-use change is currently the main driver of biodiversity loss. Projections of land-use change are often used to estimate potential impacts on biodiversity of future pathways of human development. However, such analyses frequently neglect that species can persist in human-modified habitats. Our aim was to estimate changes in biodiversity, considering affinities for multiple habitats, for three different land-use scenarios. Two scenarios focused on more sustainable trajectories of land-use change, based on either technological improvements (Pathway A) or societal changes (Pathway B), and the third reflected the historical or business-as-usual trends (Pathway 0). Using Portugal as a case study, we produced spatially-explicit projections of land-use change based on these pathways, and then we assessed the resulting changes in bird species richness and composition projected to occur by 2050 in each of the scenarios. By 2050, alpha and gamma diversity were projected to decrease, relative to 2010, in Pathway 0 and increase in Pathways A and B. However, different pathways favored different species groups, and presented strong regional differences. In the technological improvement pathway, loss of extensive agricultural areas led to an increase in both natural and extensive forest areas. In this pathway, forest species increase at the expense of farmland species, while in the societal change pathway the reverse occurs, as extensive agricultural areas were projected to increase. We show that while multiple positive pathways (A and B) for biodiversity can be envisioned, they will lead to differential impacts on biodiversity depending on the transformational changes in place and the regional socio-economic context. Our results suggest that considering compositional aspects of biodiversity can be critical in choosing the appropriate regional land-use policies

    Fast calculation of spectral optical properties and pigment content detection in human normal and pathological kidney

    Get PDF
    A fast calculation method was used to obtain the spectral optical properties of human normal and pathological (chromophobe renal cell carcinoma) kidney tissues. Using total transmittance, total reflectance and collimated transmittance spectra acquired from ex vivo kidney samples, the spectral optical properties of both tissues, namely the absorption, the scattering and the reduced scattering coefficients, as well as the scattering anisotropy, dispersion and light penetration depth, were calculated between 200 and 1000 nm. Analysis of the mean ab sorption coefficient spectra of the kidney tissues showed that both contain melanin and lipofuscin, and that 83 % of the melanin in the normal kidney converts into lipofuscin in the pathological kidney.info:eu-repo/semantics/publishedVersio

    Modulation of butyrate-degrading methanogenic communities by conductive materials

    Get PDF
    Butyrate is a volatile fatty acid commonly present in anaerobic bioreactors. Previous research showed that methane production (MP) rates from butyrate, by lake sediment microbiomes, doubled by addition of carbon nanotubes, which was accompanied by changes in the microbial community composition, with enrichment of typical fatty-acid degrading bacteria (Syntrophomonas spp.), well known to exchange electrons with methanogens via hydrogen or formate formation1. But the authors suggested that electrons exchange via conductive materials (CM) may take place instead. In our study, anaerobic butyrate-degrading enrichment cultures were developed with other CM, namely activated carbon (AC) and magnetite (Mag) at 0.5 g/L. MP started earlier in AC enrichment and complete degradation was achieved faster in Mag enrichment. Syntrophomonas spp. were enriched in all cultures (representing 60 to 80 % of the total bacterial community), but hydrogenotrophic methanogens were highly stimulated by AC (78 % of Methanomicrobiales), while the methanogenic community of Mag culture was more diverse in acetoclastic methanogens (43% of Methanosarcina and Methanosaeta). It is still unclear if the improvement on butyrate degradation is associated to the role of CM in interspecies electron transfer, but it is undoubtful that they differentially modulate the methanogenic communities towards faster MP.info:eu-repo/semantics/publishedVersio

    Bio-based solar energy harvesting for onsite mobile optical temperature sensing in Smart Cities

    Get PDF
    The Internet of Things (IoT) fosters the development of smart city systems for sustainable living and increases comfort for people. One of the current challenges for sustainable buildings is the optimization of energy management. Temperature monitoring in buildings is of prime importance, as heating account for a great part of the total energy consumption. Here, a solar optical temperature sensor is presented with a thermal sensitivity of up to 1.23% °C-1 based on sustainable aqueous solutions of enhanced green fluorescent protein and C-phycocyanin from biological feedstocks. These photonic sensors are presented under the configuration of luminescent solar concentrators widely proposed as a solution to integrate energy-generating devices in buildings, as windows or façades. The developed mobile sensor is inserted in IoT context through the development of a self-powered system able to measure, record, and send data to a user-friendly website.publishe
    corecore